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Abstract

The original of this paper appeared in Izvestia Akademii Nauk
Kazahskoi SSR, Seria Fiziko-Matematiceskih Nauk, Matematika i Mehanika 15,

1963. The author considers a nonlinear integral operator

b
Ax(t) = f K{t,s,x(s))ds
a
from L_ to L _. By use of a result, herein called Helly's theorenm,

P q

which is actually related to Helly's Principle of Choice, he proves
the complete continuity of this operator under mild restrictions on the
kernel. Suggestions are made about application of the theorem to other

types of nonlinear equations.




ON A CRITERION FOR DETERMINING THE COMPLETE CONTINUITY
OF URYSOHN'S INTEGRAL OPERATOR*

by

T. Nurekenov

In the present work we investigate the integral operator
b
Y] Ax(t) = [ K(t,s,x(s))ds,
a
where the kernel K(t,s,u) is a function of the variables t,s,u; t,s £ [a,b]
and -» < u < ®, which is measurable for all t,s and continuous in u for
almost all t,s.

Various criteria for determining the continuity and complete continuity
of this operator are known [1,2,3]. It turns out that the analysis of the
operator (1) is considerably simplified if the kernel K(t,s,u) is monotonic
in the varisable t.

In what follows, we give a new criterion by which the complete con-
tinuity of operator (1) may be determined. The fundamental result of this
work may be formulated as follows:

Theorem. Let A be a continuous operator from L into Lva Let
K(t,s,u) be a nondecreasing function in t for fixed s and u satisfv~-

ing the inequality
(2) |®(t,s,u) | < K, (t,s,u).

Assume that the operatocr B defined by

b
(3) Bx(t) = | Kl(t,s,x(s))ds

a

*Russian original appeared in IZVESTIA AKADEMIT NAUK KAZAHSKOI SSE,
Seria Fiziko-Matematiceskih MNauk, Matematika i Mehanika 15, 3, 1963,




is a completely continuous operator from LP into Lq' Then the operator
A is completely continuous.

For the proof of this theorem we shall need the following

Lemma. Let F={¢(t)} be an infinite family of nondecreasing functions
defined on the interval [a,b]. Then there exists in F a sequence
{¢k(t)}i=l, which converges almost everywhere to some functiom ¢(t),
which may assume an infinite value on some set and which does not decrease
in the boundary regiom.

Proof of the lemma. Choose in F some sequence of functions

) B, ()58, (8) 5 vnsb (8D,
o , @ . (1) o
From this sequence, {¢n}n_ly form another sequence of functions {¢q jp_w
- I3 ) S
as follows:
y N 1 .
}( ¢ (©), if [¢_(0)] <1
L),y 2
(5 877 (e) = A
sgn o(t), if §¢n<t)] > 1.
By Helly's theorem [4] we may choose a subsequence of functions
¢, = {¢(1)}§_ , which converges everywhere to the nondecreasing function
1 ng i=1 ©
(1)
0] .
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Consider now the subsequence of functionms {¢_ I, 1 from which we
n, i=
i

(
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shall construct a sequence of "truncated" functions {¢n >}. ; 2s follows:
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J‘¢n (£), if |o  (©)] <2
) 62 (1) =
1
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L’2 sgn ¢ if i@n,<t’ 2 2.
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Applying Helly's theorem to the sequence {¢é%)}j;l, we obtain the subse-
quence @2 = {¢é%)};;l converging everywhere to the function ¢(2>(t)a

Continuing %his process, we may construct a countable set of converg-
ing subsequences ®l’®2’®3"°°’® ,... converging respectively to the

n

functions ¢(l>(t),¢<2)(t),.,u, i.e.,

o = {¢él)(t),¢£1)(t)g,,.,¢§1)(t),.‘,},

[

1 2 k
) o, = 6P, @, P, 0,

1 T2

5 = {¢é?> (t),@ém) (t),,..,¢im) (c),.. .}

T 5.2 ik

The sequence of functions {¢J(k)(t)}lf=1 has the following properties:
0 (k) . . . -
17, ¢>7(t) is nondecreasing in t for all k,

200 oMy « o™ Dy o 1,0,

It is easy to see that this sequence converges everywhere to the function

¢{t), which is defined by the equation
8) o(t) = sups™ (1)

Obviously, the function ¢(t) satisfies the conditions of the lemma.
Tt is not difficult to verify that the subsequence ¢ = {¢n (£),0 (o),..

1 %2
also converges to the fumction ¢(t) at every point of the interval [a,b].

Thus, the lemma is proved.

We turn to the proof of the theorem. Let xl(t),x2<t)3...,xn(t}ﬁ,w be

a sequence of functions taken from the unit ball in Lp° Form the sequence




{¢n(t)}z;1 by defining
(93 ¢n(t) = Axn(t), n=1,2,...

It is easy to see that, since the function K(t,s,u) is nondecreasing
in t, the functiomns ¢n(t) are nondecreasing in t for any n.
[e o]
By the preceding lemma, from the sequence {¢n(t>}n*1 we may choose

some subsequence converging everywhere to the function o(t). We shall

- I o

also refer to this sequence as x@n(t)}j_ln

a=

We now introduce the sequence {wn(t)}z=1, defined by
(10) wn(t) = an(t), n=1,2,...

Since the operator B is compact, we may assume that this sequence converges
ro some function Y(t) in the norm of the space Lq'

From inequality (2), we have
(11 lo (o] < (), n=1,2,..

Since wn(t) converges to Y(t) in the norm of Lp’ it follows that the con-
vergence is almost everywhere for some subsequence. Call this subsequence

wn(t) once again. Therefore, the inequality
(12) [oce) ] < o(e)

holds almost everywhere. From inequalities (11) and (12), it follows that
the functions ¢(t) and ¢n(t) are measurable and finite almost everywhere.

By Lebesgue's theorem, the ¢P(t) converge to ¢(t) in measure.
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Consider now the sequence {Un(t>}:=19 defined by the equations
(13) U_(e) = [6_(0)-0()]T, n = 1,2,...

It is easy to see that U(t) converges to zero and the functions Un(t}

have equicontinuous and absolutely continuous integrals. By Vitali's

theorem, they converge to zero in the norm of the space LG. Q.E.D.
1

Corollary. If the kernel K(t,s,u) of A is of bounded variation

in t and also satisfies
[K(t,s,u)] € K (t,8,1),

where the operator

b

Bx(t) = f Kl(t,s,x(s))ds

a
is a completely continuous operator from Lp into Lq’ then the operator
A 1is completely continuous, if it is continucus,.

This theorem may be applied in the usual way to the investigation of

nonlinear integral equations

b

x(t) = f K{t,s,x(s);M)ds
a

or integro~differential equations

b

ox(t,s) _ J R(t,s,x(s);M)ds + £(t).
a

ot

Note also that the theorem may be generalized to integral operators

in spaces of vector functions.
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